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1 Introduction

These are my personal lecture notes for MATH 3406: A Second Course in Linear Alge-
bra, taken at Georgia Tech during the Fall 2023 semester. I am making them publicly
available in the hope that they might be useful to other students.

These notes are intended as a supplemental resource and closely follow the course
structure, which corresponds to chapters in Linear Algebra Done Right by Sheldon
Axler.

Please be aware that these are not official course materials and are guaranteed to
contain errors, typos, and omissions. All such mistakes are entirely my own. If you
find an error or have a suggestion, please feel free to contact me via my website at
echen347.github.io or by email at ec@gatech.edu.
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2 Notation

These are assumed unless otherwise specified. The specific section’s definition of these
variables take priority over these definitions. If something seems unclear please con-
tact me.

2.1 UV,W

Denotes a vector space.

2.2 u,v,w

Denotes a vector in its corresponding vector space.

23 F
Denotes the field V' is over, usually R or C.

Used to refer to a list; ¢ ranges from 1 or 0 to some arbitrary natural number.

25 ST

Denotes a linear map, usually from V to W.

26 A DB

Denotes a n-by-m matrix.

27 ¢

Denotes a linear functional from V to F.



3 Vector Spaces

Corresponding to Chapter 1, sections B and C of Axler.

3.1 Properties of a Vector Space
V is a vector space iff VA, A1, Ao € F and Vu,v,w € V:
LutveV
2. weV
.utv=v+tu
4. (u+v)+w=u+ (v+w)
5. 0st.v+0=v
6. I(—v)st.v+(—v)=0
7. A st lv=0
8. (M +A)v=Xv+ v, Au+v) =Au+ v

Sometimes written as V.S. in shorthand.

3.2 Subspace
U is a subspace of V iff VA € F, Vu, w € U:
1.0eU
2.ut+weU
3. ueU
Note that it is usually more efficient to show something is a subspace of another V.S.
than to show it is a V.S. directly.
3.3 Sums
If U; are subsets of V then Y U; = {>_ u;|u; € U;}. Note this is similar to the union
of sets in set theory.
3.4 Direct Sums

Denoted Uy @ - - - @ U,,, a direct sum is said to be when each element of Y U; can be
uniquely written as a sum of u,;.

3.4.1 Condition for a Direct Sum

> U, is a direct sum iff Y u; = 0 only when Vu;, u; = 0.

3.4.2 Condition for a Direct Sum

U+ W is adirect sum iff U N W = {0}.



4 Span

Corresponding to Chapter 2, Section A, first half of Axler.

4.1 Span

The span of a set of vectors v; is {>_ a,v;la; € F}, denoted span(v;). Sometimes
defined as the set of all linear combinations of v;; a linear combination of a set of
vectors v; is simply > a;v; for some a; € F.

4.1.1 Span and Vector Spaces

We say v; spansa V.S. V if V is the smallest V.S. that contains every vector in span(v;).

4.2 Finite-Dimensional Vector Space

V' is finite-dimensional if Jv; that spans V. Note: by definition, a list has finite length.

4.3 Polynomials

The definition of a polynomial is assumed, and is denoted p(z). However, note that
some polynomials may be over a different field. p(z) = (2i +7)2% — (3i — 11)22 + 12
is a polynomial over C, for example.

43.1 P(F)

The set of all polynomials with coefficients in F.

4.3.2 Degree of a Polynomial

The degree of a polynomial is the highest degree m s.t. p(z) can be expressed as
p(z) = Zaipi, a; € F.
i=0
Then we say deg p = m. If a polynomial is identically 0, then its degree is —o0.

4.33 P, (F)

The set of all polynomials of degree m, coefficients € F.

4.4 Infinite-Dimensional Vector Space

A V.S. that is not finite-dimensional.



5 Linear (In)Dependence

Corresponding to Chapter 2, Section A, second half of Axler.

5.1 Linear Independence
v; is linearly independent if there exists a unique solution to Y  a;,v; = 0 fora; € F.
The solution is then all a; = 0. Note the empty list () is also linearly independent.
5.2 Linear Dependence
v; is linearly dependent if it is not linearly independent. Thus there exists a; not all 0
such that > a;v; = 0.
5.2.1 Linear Dependence Lemma
Suppose v;,i € [m] is linearly dependent. Then 35 € [m] s.t.

1. v; € span(vy,...vj_1)

2. span(v;) = span(v; — v, ). Note that v; — v; denotes the original list of v; with
v; removed.

Note that this implies that in a finite-dimensional V.S., the length of every linearly
independent list of vectors is < the length of every spanning list of vectors.

5.3 Finite-Dimensional Subspaces

Every subspace of a finite-dimensional V.S. is finite-dimensional.

10



6 Bases

Corresponding to Chapter 2, Section B of Axler.

6.1 Basis

A list of vectors in V' that is linearly independent and spans V.

6.2 Criterion for Basis

v; is a basis for V iff Vo € V, v =Y a;v;.

6.3 Spanning Lists and Bases

Every spanning list is a superlist of a basis.

6.4 Basis of Finite-Dimensional Vector Spaces

3 a basis for every finite-dimensional V.S.

6.5 Linearly Independent Lists and Bases

Every linearly independent list in a finite-dimensional V.S. is a sublist of a basis.

6.6 Existence of Subspaces in Direct Sums

If V is finite-dimensional, and U C V,thendW CV st. V =U @ W.

11



7 Dimension
Corresponding to Chapter 2, Section C of Axler.

7.1 Dimension

The length a basis of the V.S.; denoted dim V.

7.2 Dimension of a Subspace

Given finite-dimensional V, U C V,dim U < dim V.

7.3 Linearly Independent Lists and Bases (and Dimension)

Every linearly independent list in V' with length dim V" is a basis of V.

7.4 Spanning Lists and Bases (and Dimension)

Every spanning list in V' with length dim V' is a basis of V.

7.5 Dimension of a Sum

Given U, W C V, then dim (U + W) = dim U + dim V' — dim (U N W). Note
for direct sums dim (U + W) = dim U + dim V, since (U N W) = {0}, and hence
dim (UNW) =0

12



8 Vector Space of Linear Maps

Corresponding to Chapter 3, Section A of Axler.

8.1 Linear Map
The functionT : V — W st. VA € F, Vu,v € V:

1. T(u+v)=Tu+Tv
2. T(\w) = A(Tw)

Note that T'(v) = T'v, and usually parenthesis are removed.

8.1.1 Zero Map

The zero map, or 0, is defined as Vv € V,0v = 0.

8.1.2 Identity Map
The identity map, or I, is defined as Vv € V, Tv = v.

8.2 L(V,IV)

The set of all linear maps from V' to W.

8.3 Linear Maps and Bases
If v; is a basis of V and wj is a basis of W, then 3T € L(V, W) s.t. Vj, Tv; = w;.

8.4 Addition, Scalar Multiplication on L(V, W)

For S,T € L(V,W),v € V, A € F, we define (S+T)(v) = Sv+Tv,and (A\T)(v) =
A(Tv). Note that this implies £L(V, W) is a V.S.

8.5 Product of Linear Maps

GivenT € L(U,V), S € L(V,W),u € U, define ST € LU, W) st. (ST)(u) =
S(Tu).

8.6 Algebraic Properties of Linear Maps

The following are some notable properties of linear maps. Given T,T; € L(U,V),
S,S; € L(V,IV):

1. (TWT)Ts = Ty (T»T3)

2.TI=IT=T

3. (S14 89)T = S1T + SoT, S(Th + Tz) = STy + ST
4. T(0) =0

13



9 Null Spaces and Ranges
Corresponding to Chapter 3, Section B of Axler.

9.1 Null Space
Denoted null 7', defined as {v € V|T'v = 0}. This is a subspace of V.

9.2 Injective

T is injective if T'uw = T'v = u = v. This is equivalent to null 7' = {0}

9.2.1 Dimension and Injectivity

IfT € L(V,W) where dim V > dim W, then T is not injective.

9.3 Range
Denoted range T, defined as {T'v|v € V'}. This is a subspace of V.

9.4 Surjective

T is surjective if range T' = W.

9.4.1 Dimension and Surjectivity

IfT € L(V,W) where dim V' < dim W, then T is not surjective.

9.5 The Fundamental Theorem of Linear Maps
dim V' = dim null 7" 4 dim range T

9.6 (In)Homogeneous Systems of Linear Equations

Not covered in Hannah Turner’s Section of MATH 3406. Please contact me if you have
questions regarding this section of Axler, preferably when I don’t have any exams
coming up.

14



10 Matrices

Corresponding to Chapter 3, Section C of Axler.

10.1 Matrix

The definition of a matrix is assumed, however it is useful to have a reminder that an
m-by-n matrix with m rows and n columns:

Al,l Al,n
A= 1
Ana . A

Note that A; j, refers to the entry in row j, column k in A.

10.2 Matrix of a Linear Map

Denoted M(T'); v, € [1,n] is abasis for V, and w;, i € [1,m] is a basis for W. Then
the matrix of T wrt v;, w; is a matrix s.t. T, = > A; pw;. If bases are unclear, use
MT, (vi), (wi))-

10.3 Matrix Addition

Matrices of the same size can be added as such: (A+ B); x, = A, . + Bj i, V4, k. Note
that M(S +T) = M(S) + M(T).

10.4 Scalar Multiplication of a Matrix

A € F: M = B, Bj j; = MA; 1. Note that AM(T') = M(AT).

10.5 F™"

The set of all m-by-n matrices with entries in F. Note that dim F""" = mn.

10.6 Matrix Multiplication

A € F™m B € F™P, AB € F™P, (AB)j’k = ZAj,iBi,k- Note that if T' €
LU, V), S8 e LV,W)= M(ST) = M(S)M(T).

10.7 A;., Ay

Denotes a 1-by-n matrix consisting of row j of A, or a m-by-1 matrix consisting of a
column k of A.

10.7.1 Entries and Columns in a Matrix Product

Ae Fmn B e F™P, (AB)J',]C = Aj7.Bk,., and (AB),]? = AB]W

10.7.2 Linear Combination of Columns

cis a n-by-1 matrix. Then Ac =Y ¢;A. ;.

15



11 Invertibility and Isomorphisms

Corresponding to Chapter 3, Section D of Axler.

11.1 Invertible, Inverse

T € L(V,W) is invertible if 3S € L(W,V) s.t. ST is the identity map on V and T'S
is the identity map on W. S is said to be the inverse of T". Note that any invertible
linear map has a unique inverse, and is denoted 7~*. T is invertible iff Y is injective
and surjective.

11.2 Isomorphism, Isomorphic

An invertible linear map; two V.S. are isomorphic if 3 an isomorphism from one V.S. to
the other.

11.2.1 L(V, W), Fmn

M is an isomorphism between £(V, W) and F"™",

11.3 dim £(V, W) = (dim V)(dim W)

Only applies to finite-dimensional V.S.

11.4 Matrix of a Vector
C1

Denoted M(v) = [ : |;Forabasis v; of V,v =3 ¢;v;. Note M(T). ), = M(vy).

Cn

Further, M (Tv) = M(T)M(v).

11.5 Operator
T,st.TeLl(V)LV)=LV,V)

11.6 Invertible, Injective, Surjective

For finite-dimensional V, T' € L(V'), either all 3 conditions are true, or none.

16



12 Invariant Subspaces

Corresponding to Chapter 5, Section A of Axler.

12.1 Notation

T € L(V), unless otherwise stated.

12.2 Invariant Subspace

Subspace U is invariant if u € U = Tu € U.

12.3 Eigenvalue
A € Fisan eigenvalueif v € V s.it. v # 0, Tv = \v.

12.3.1 Conditions to be an Eigenvalue

T — M\ is not injective, surjective, or invertible, where one condition implies the other
two.

12.4 Eigenvector

A is an eigenvalue of T. v € V is an eigenvector of T corresponding to X if v #
0,Tv = Av.

12.5 Linear Independence of Eigenvectors

A; are distinct eigenvalues of T, and v; the corresponding eigenvectors. Then v; is a
linearly independent set.

12.6 Number of Eigenvalues

Given finite-dimensional V' there are at most dim V' distinct eigenvalues for any 1" €

L(V).
12.7 Ty, T/U
For an invariant subspace U:
1. The restriction operator T'|y € L(U) is given by T'|yy (u) = Tu.
2. The quotient operator T/U € L(V/U) is givenby (T/U)(v+U) =Tv + U.

The quotient operator was not covered in class, and is henceforth not used.

17



13 Eigenvectors and Upper-Triangular Matrices

Corresponding to Chapter 5, Section B of Axler.

13.1 Notation

T € L(V), unless otherwise stated.

13.2 1™

T applied m times; T'- - - T. Note T® = [. If T is invertible, then 7™ = (T~1)™.
—
m times

13.3 p(T)

Given a polynomial p(2) = 3" a2, p(T) = aol + . a;T".

13.3.1 Product of Polynomials
p,q € P(F). (pa)(2) = p(2)q(2).

13.4 Multiplicative Properties
p,q € P(F), then (pg)(T) = p(T)q(T), and p(T)g(T) = q(T)p(T).

13.5 Existence of Eigenvalues in Complex Vector Spaces

V finite-dimensional V, VT € V, 3 an eigenvalue.

13.6 Matrix of an Operator

The matrix of an operator is defined the same way as the matrix of a linear transform
from V to V with the same basis.

13.6.1 Diagonal of a Matrix

A; ; in a square matrix.

13.6.2 Upper-Triangular Matrix

A matrix with all entries below the diagonal equal to 0.

13.7 Conditions for Upper-Triangularity

v; is a basis of V. Then the following are equivalent:

1. M(T) is upper triangular.
2. Tw; € span(v;),1 € [1,5],V5 € [1,n]

3. span(v;),i € [1, j],Vj € [1,n] is invariant under 7.

18



13.8 Existence of Upper-Triangular Matrix over C

V finite-dimensional V, VI' € V/, 3 a basis of V s.t. T has an upper-triangular matrix
in respect to the basis.

13.9 Invertibility in Upper-Triangular Matrix

T has an upper-triangular matrix; 7" is invertible iff Vi, A; ; # 0.

13.10 Eigenvalues in Upper-Triangular Matrix

The eigenvalues of T lie on the diagonal of the upper-triangular matrix of 7.

19



14 Eigenspaces and Diagonal Matrices

Corresponding to Chapter 5, Section C of Axler.

14.1 Notation

T € L(V), unless otherwise stated.

14.2 Diagonal Matrix

A matrix with all non-diagonal entries 0.

14.3 Eigenspace
E(A\,T) =null(T — AI) is an eigenspace of T' corresponding to an eigenvalue .

14.3.1 Sum of Eigenspaces

> E(X\;, T) where \; are distinct eigenvalues of finite-dimensional 7T is a direct sum,
and further > dim E(\;,T) < dim V.

14.4 Diagonalizable

T has a diagonal matrix with respect to some basis of V.

14.4.1 Conditions Equivalent to Diagonalizability

For ), distinct eigenvalues of finite-dimensional 7T™:
1. V has a basis consisting of eigenvectors of T'.
2. 3 1-dimensional invariant subspaces U; of Vs.t. V=U; & ... & U,.
3.V=EWM,T)®...® E(\y,T).
4. dimV =) dim E(\;, T).

14.5 Enough Eigenvalues imply Diagonalizability

If T has dim V' distinct eigenvalues then 7' is diagonalizable.

20



15 Inner Products and Norms

Corresponding to Chapter 6, Section A of Axler.

15.1 Notation

V' denotes an inner product space after 14.3.1.

15.2 Dot Product

Assumed. However, note that in C", the euclidean dot product is (u;, v;) = > u; ;.

15.3 Inner Product

A function on V that takes each ordered pair (u,v) of elements of V' to a number
(u,v) € Fsit.

1. (v,v) > 0,Yv € v.

2. (v,v) =0iffv =0.

©

N

(v,
At v,w) = (u,w) + (v, w), Yu,v,w € V.
- (A, v) = Mu,v), VA € F,Vu,v € V.

A

o

u,v) = (v, u),Vu,v € V.

15.3.1 Inner Product Space

AVS. V along with an inner product on V.

15.3.2 Properties of an Inner Product
1. Yu € V, the function f : v — (v, u) is a linear map from V to F.
2. (0,u) =0,Yu e V.

3. 0)=0,YueV.

N

(u,
Au, v+ w) = (u,v) + (w,w),Yu,v,w € V.
- Au, W) = Mu,v), Y\ € F,Vu,v € V.

o

15.4 Norm

[vl] = V/{v,0)

15.4.1 Basic Properties of the Norm
1. ||| =0iffv =0.
2. [l = [Al[o]|,¥A € F.

15.5 Orthogonal

u,v € V are orthogonal if {u,v) = 0.
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15.5.1 Orthogonality and 0

1. Ois orthogonal toallv € V.

2. 0 is the only vector in V' orthogonal to itself.

15.6 Pythagorean Theorem

u, v are orthogonal, then ||u + v||? = ||u||? + ||v||?.

15.7 Orthogonal Decomposition
{u, v)

[|v][?

u,v € V where v # 0. Then set ¢ = ,and w = u —

and u = cv + w.

15.8 Cauchy-Schwarz Inequality

[{(u, v)| < ||ul|||v]|, where equality is achieved iff u = Av, A € F.

15.9 Triangle Inequality
[+ of] < fful] + [fo

, where equality is achieved iff u = Av, A > 0 € F.

15.10 Parallelogram Equality
[lu+ 0l + [Ju = ol* = 2(][ul|* + []][*).

22



16 Orthonormal Bases

Corresponding to Chapter 6, Section B of Axler.

16.1 Notation

V' denotes an inner product space.

16.2 Orthonormal

v; is orthonormal if each ||v;|| = 1 and is orthogonal to all other vectors in the list.

16.3 Norm of an Orthonormal Linear Combination

e; is an orthonormal list of V, then || Y a;e;||? = 3 |ai|?, Va; € F.

16.4 Linear Independence of Orthonormal Lists

Every orthonormal list of vectors is linear independent.

16.5 Orthonormal Basis

An orthonormal list of vectors that are also a basis.

16.5.1 Length of Orthonormal List and Bases

Every orthonormal list v; with length dim V' is an orthonormal basis of V.

16.6 Vector in terms of Orthonormal Basis

e; is an orthonormal basis, then v = > (v, ¢;)e; and [|v]|? = 3 [{v, €;)|2.

16.7 Gram-Schmidt Procedure

Given linearly independent v;, we have e; = m, and for j, we have
j—1
v — (Z(m,e)ei)

Then e; is orthonormal, and span(v;) = span(e;).

j =

16.8 Existence of Orthonormal Basis

V finite-dimensional inner product space, 3 an orthonormal basis.

16.8.1 Orthonormal List and Orthonormal Bases

Every orthonormal v; in finite-dimensional V' can be extended to an orthonormal
basis of V.
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16.9 Upper-triangular Matrices and Orthonormal Bases

T has an upper-triangular matrix with respect to some basis = 3 an upper-triangular
matrix with respect to some orthonormal basis.

16.10 Schur’s Theorem

For finite-dimensional complex V', 3 upper-triangular M (T") with respect to some
orthonormal basis of V.

16.11 Linear Functional

¢ € L(V,F).

16.12 Riesz Representation Theorem

Ju e Vst ¢p(v) = (v,u)Vv € V.
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17 Orthogonal Complements and Minimization Prob-
lems

Corresponding to Chapter 6, Section C of Axler.

17.1 Notation

V' denotes an inner product space.

17.2 Orthogonal Complement, U+
GivenU CV, U+ ={v eV : (v,u) =0,Yu € U}.

17.2.1 Basic Properties of Orthogonal Complement
L.UCV=U'is a subspace of V.
2. {0}t =V.
3. Vi ={0}.
4. UCV=UnU*c{o}
5 U,W CVandU C W, then Wt C UL

17.3 Direct Sum of Subspace and Orthogonal Complement
V = U @ U™ for finite-dimensional subspace U.

17.4 Dimension of the Orthogonal Complement
dim U+ = dim V — dim U for finite-dimensional V and subspace U of V.

17.5 Orthogonal Complement of Orthogonal Complement

U = (U+)* for finite-dimensional subspace U.

17.6 Orthogonal Projection, P

Py € L(V)s.t. forv € V, writev = u+vwhereu € U andw € U~. Then Pyv = u,
where U is finite-dimensional.

17.6.1 Properties of the Orthogonal Projection
1. Py e L(V).
2. Ppu=u,Vu e U.
3. Pyw =0,Yw € UL,
4. range Py =U.
5. null Py = U+,
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6. v— Pyv e U™t

7. P% = Py.

8. |[Pyvl| < [[v]l

9. V orthonormal basis e; of U, Pyv = > (v, €;)e;
17.7 Minimizing the Distance to a Subspace

Given finite-dimensional subspace U, v € V,U € U, |[v — Pyv|| < ||v — u|, where
equality is achieved iff u = Pyo.
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18 Self-Adjoint and Normal Operators

Corresponding to Chapter 7, Section A of Axler.

18.1 Notation

U, V, W denote inner product spaces.

18.2 Adjoint, T™
T W —= Vst (Tv,w) = (v, T*w), Vv € V,Yw € W.

18.2.1 Adjoint is a Linear Map
T e L(V,W), thenT* € LIW,V).

18.2.2 Properties of the Adjoint
1L (S4+T) =S"+T*VS,TeLV,W).
2. (NT)* = \T*,V\ € F, VT.
3. (T*)* =T,VT.
4. I*=1.
5. (ST)* =T*S*,where T € L(V,W),and S € L(W,U).

18.2.3 Null Space and Range of 7™
1. null T* = (range 7).
2. range T* = (null 7).
3. null 7' = (range 7%)*.
).

4. range T = (null 7%)+

18.3 Conjugate Transpose

The conjugate transpose of an m-by-n matrix is the n-by-m matrix obtained by in-
terchanging the rows and columns and then taking the complex conjugate of each

entry.

18.4 The Matrix of T*

Suppose e; is an orthonormal basis of V and f; is an orthonormal basis of W. Then

M(T*, f;,e;) is the conjugate transpose of M(T, e;, f;).

18.5 Self-Adjoint
T =T*or (Tv,w) = (v,Tv),Yo,w e V.
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18.5.1 Eigenvalues of Self-Adjoint Operators

All eigenvalues of self-adjoint operators are real.

18.5.2 Orthogonality of Tv
Over C, if (Tv,v) = 0,Vv € V,then T = 0.

18.5.3 Self-Adjoint Operators and (T'v, v)
Over C, T is self-adjoint iff (T'v,v) € R,Vv € V.

18.5.4 Self-Adjoint Operators and (Tv,v) =0
If T is self-adjoint s.t. (T'v,v) = 0,Vv € V,then T = 0.

18.6 Normal

TT* =T*T. Note every self-adjoint operator is normal, but not all normal operators
are self-adjoint.

18.6.1 Condition for Normality
T is normal iff || Tv|| = ||T*v||,Yv € V.

18.6.2 Orthogonal Eigenvectors for Normal Operators

Given normal 7, then the eigenvectors corresponding to distinct eigenvalues of T" are
orthogonal.
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19 The Spectral Theorem

Corresponding to Chapter 7, Section B of Axler.

19.1 Notation

U, V, W denote inner product spaces.

19.2 The Complex Spectral Theorem
ForF =C:
1. T is normal.
2. V has an orthonormal basis consisting of eigenvectors of T'.

3. T has a diagonal matrix with respect to some orthonormal basis of V.

19.3 Invertible Quadratic Expressions
Given self-adjoint T', and b, ¢ € R s.t. b2 < 4c. The T? + bT + cI is invertible.

19.4 Eigenvalues of Self-Adjoint Operators
Given V' # {0}, then T has an eigenvalue.

19.5 Self-Adjoint Operators and Invariant Subspaces

T is self-adjoint and U is an invariant subspace of V. Then
1. U* is invariant under 7.
2. Ty € L(U) is self-adjoint.
3. T|yr € L(U?) is self-adjoint.

19.6 The Real Spectral Theorem
ForF = R:
1. T is self-adjoint.
2. V has an orthonormal basis consisting of eigenvectors of T'.

3. T has a diagonal matrix with respect to some orthonormal basis of V.
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